

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования "ТОМСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ"

пл. Соляная, 2, г. Томск, 634003, телефон (3822) 65–39–30,факс (3822) 65–25–52, e-mail: rector@tsuab.ru

ИНСТИТУТ НЕПРЕРЫВНОГО ОБРАЗОВАНИЯ

	, ,	УТВЕРЖДАЮ Проректор по учебной работе		
		О.Г. Волокитин		
	«»	2018 г.		
	И ПРОГРАММА ия квалификации			
Обеспечение электрической энерги воздуха. Альтерна	ей, газом, паром; к итивная энергетик			
направление подготовки (специальнос 08.03.01 «Ст	сти): проительство»			

1. Общая характеристика программы.

1.1. Цель и задачи реализации программы.

Целью реализации программы повышения квалификации является приобретение теоретических знаний и умений в проектировании, эксплуатации и реконструкции систем теплоснабжения с применением альтернативной энергетики в рамках подготовки к производственно-технической деятельности по полученной ранее специальности с привлечением приобретенных навыков.

Для достижения указанной *цели* предлагается решение следующих задач:

- изучение принципа работы и эксплуатации систем теплоснабжения с использованием альтернативной энергетики;
 - возможность производить работы по реконструкции систем;
 - овладение навыками по подбору оборудования;
- использование современной вычислительной техники, как в проектировании, так и в эксплуатации.

Таким образом, посредством программы повышения квалификации реализуется постепенный переход от общих вопросов оптимизации и контроля качества к более прикладным, конкретизированным, непосредственно связанным с будущей профессиональной деятельностью слушателя.

1.2. Категория слушателей.

Лица, желающие освоить программу повышения квалификации, должны иметь среднее профессиональное или высшее техническое образование.

Желательно иметь стаж работы (не менее 1 года).

Сфера профессиональной деятельности – теплоснабжение, теплотехническое оборудование, жилищно-коммунальное хозяйство.

1.3. Трудоемкость обучения и режим занятий слушателей.

Нормативный срок освоения программы – 72 часа, включая все виды аудиторной и самостоятельной учебной работы слушателей.

Учебная нагрузка устанавливается не более 36 часов в неделю, включая все виды аудиторной и внеаудиторной учебной работы слушателя.

1.4. Форма обучения и форма организации образовательной деятельности.

Форма обучения: заочная.

Продолжительность учебной недели составляет: по заочной форме обучения – 5 дней.

Программа реализуется с использованием дистанционных образовательных технологий.

2. Формализованные (планируемые) результаты освоения программы.

В результате изучения программы слушатели должны:

знать:

- методы проектирования систем теплоснабжения с использованием альтернативной энергетики;
- способы и мероприятия по техническому обслуживанию при их эксплуатации.

<u>уметь:</u>

- формулировать и решать задачи;
- работать с проектно-сметной документацией, соответствующей профилю данной дисциплины;

владеть:

- методами проектирования оборудования для альтернативных систем;
- методами подбора оборудования для ТП.

3. Содержание программы.

3.1. Календарный учебный график.

Образовательный процесс по программе может осуществляться в течение всего учебного года.

Занятия проводятся по мере комплектования групп.

	Внеауд. часов	Дней	Общая
График обучения	в день	в неделю	продолжительность
Форма обучения			программы (дней,
			недель, месяцев)
заочная	8	5	2 недели

3.2. Учебный план.

№ п/п	Иотического такина тур (подилеж)	OT*,	Аудиторные занятия, час.		Дистанционные занятия, час.		B3*	CPC*,	Форма
J45 11/11	Наименование дисциплин (модулей)	час.	Лк*	П3, С3, Л3*	Лк*	П3, С3, Л3*	час.	час.	контроля
1	2	3	4	5	6	7	8	9	10
1.	Альтернативная энергетика	72			72				зачет
Практи	ки (стажировки)								Не
									предусмо
									трено
Итогов	Итоговая аттестация								зачет
	ИТОГО:								

 $^{^*}$ OT — общая трудоемкость, Лк — лекции, $\Pi 3$ — практические занятия, C3 — семинарские занятия, $\Pi 3$ — лабораторные занятия, B3 — выездные занятия, CPC — самостоятельная работа слушателя

3.3. Содержание учебных дисциплин.

№ п/п	Наименование тем	Содержание обучения по темам, наименование и тематика лабораторных (практических и/или семинарских) занятий, самостоятельной работы слушателя и используемых образовательных технологий				
1.1	Альтернативные источники энергии. Основы проектирования.	Будут рассмотрены существующие типы альтернативных источников энергетики. Показана актуальность их применения в настоящее время. Будет рассказано про основы проектирования.				
2.1	Системы солнечного отопления. Пассивная и активная система.	Будет рассмотрена активная и пассивная системы солнечного отопления, показаны их преимущества и недостатки.				
2.2	Расчет поступления солнечной радиации.	Будет представлен порядок расчета поступления солнечной радиации на земную поверхность.				
2.3	Активные системы солнечного отопления.	Будут рассмотрены активные системы солнечного отопления, работающие на основе концентрирующих и плоских гелиоприемников. Будет показан их принцип работы и конструкция. Также будут рассмотрены плоские коллекторы и плоские абсорберы.				
2.4	Пассивные системы солнечного отопления.	Будет рассмотрена конструкция и принцип работы пассивных систем солнечного отопления, таких как система «здание-коллектор», «стена-коллектор с прозрачной теплоизоляцией».				
3.1	Системы геотермального отопления. Классификация. Способы добычи термальных вод.	Будут рассмотрены системы геотермального отопления, их классификация, преимущества и недостатки, принцип работы и конструкция. Будут приведены способы добычи термальных вод и представлен порядок расчета.				
4.1	Системы, использующие теплоту атмосферного воздуха.	Будут рассмотрены системы, использующие теплоту атмосферного воздуха, их преимущества и недостатки. Будет представлен порядок расчета, принципиальная схема, принцип работы и конструкция.				
5.1	Использование теплоты поверхностных вод.	Будут рассмотрены системы, использующие теплоту поверхностных вод, их преимущества и недостатки. Будет представлен порядок расчета, принципиальная схема, принцип				

		работы и конструкция.			
6.1	Использование теплоты грунта.	Будут рассмотрены системы, использующие теплоту грунта, их преимущества и недостатки, на примере теплового насоса. Будет представлен порядок расчета, принципиальная схема, принцип работы и конструкция.			
7.1	Использование теплоты грунтовых вод.	Будут рассмотрены системы, использующие теплоту грунтовых вод, их преимущества и недостатки. Будет представлен порядок расчета, принципиальная схема, принцип работы и конструкция.			
8.1	Утилизация сбросной теплоты. Источники сбросной теплоты. Методы использования.	Будет рассмотрено понятие утилизация сбросной теплоты, виды источников сбросной теплоты, принцип работы и конструкция. Будет рассказано о регенеративных и рекуперативных теплообменниках. Будет приведены порядок расчета данных систем.			
Прак	гические и/или семинарские занятия	Не предусмотрены.			
Лабој	раторные занятия	Не предусмотрены.			
Самостоятельная работа слушателя		Работа заключается в самостоятельном изучении лекционного материала и ответе на поставленные вопросы.			
Испо.	льзуемые образовательные технологии	В преподавании курса используются преимущественно традиционные образовательные технологии: самостоятельные занятия.			

3.4. Требования к промежуточной и итоговой аттестации.

Промежуточная аттестация проводится в виде тестирования на тему пройденного материала. Оценка уровня освоения дисциплины осуществляется по двухбалльной системе («зачет», «незачет»).

Итоговая аттестация производится в один этап:

- тестирование по предложенным вопросам.

Для получения зачета необходимо ответить на 50 вопросов.

Вопросы к тестированию приведены в Приложении А.

Лицам, успешно освоившим программу повышения квалификации и прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации.

4. Условия реализации программы.

4.1. Материально-технические условия реализации.

Занятия проводятся с помощью дистанционных образовательных технологий.

4.2. Учебно-методическое обеспечение программы.

Доступ к электронным образовательным ресурсам происходит через единую информационно-образовательную среду MOODLE (http://izido.ru)

Перечень рекомендуемых учебных изданий:

Основная литература:

- 1. Баскаков, А.П. Нетрадиционные и возобновляемые источники энергии: учеб. для вузов / А.П. Баскаков, В.А. Мунц. М.: Издательство Бастет, 2013. 365 с.
- 2. Протасевич, А.М. Энергосбережение в системах теплогазоснабжения, вентиляции и кондиционирования воздуха: Уч. пос. / А.М. Протасевич. // znanium.com [Электронный ресурс]: электронно-библиотечная система. Электрон. дан. М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2013. 286 с.

Дополнительная литература:

- 1. Сибикин, Ю.Д. Технология энергосбережения: Учебник / Ю.Д. Сибикин, М.Ю. Сибикин. // znanium.com [Электронный ресурс]: электронно-библиотечная система. Электрон. дан. М.: Форум: НИЦ ИНФРА-М, 2013. 352 с.
- 2. Мархоцкий, Я.Л. Основы экологии и энергосбережения: учеб. пособие / Я.Л. Мархоцкий. // znanium.com [Электронный ресурс]: электронно-библиотечная система. Электрон. дан. Минск: Вышэйшая школа, 2014. 287 с.

Электронные и Internet-ресурсы:

- 1. Елистратов, В.В. Использование возобновляемой энергии. [Электронный ресурс] / СПб: Издательство политехнического университета. Электронная библиотека. С.-Петербург, 2008. Режим доступа: http://diagram.com.ua/library/energ-alternativnaya-energiya.php?row=53, свободный.
- 2. Удалов С.Н. Возобновляемые источники энергии. Учебник. [Электронный ресурс] / Издво НГТУ. Электронная библиотека. Новосибирск, 2009. Режим доступа: http://bukoteka.ru/item/117184, свободный.

5. Кадровое обеспечение программы.

Директор ИНО-ТГАСУ

Образовательный процесс по дисциплинам (модулям) обеспечивается научнопедагогическими кадрами, имеющими базовое образование, соответствующее профилю дисциплины (модулю), и ученую степень или опыт деятельности в соответствующей профессиональной сфере и систематически занимающимися научной и/или научнометодической деятельностью.

Преподавательский состав, работающий по данной программе представлен в приложении B.

6. Разработчики программы.		
	Е.А. Иванова, ст. преподаватель «Теплогазоснабжение» ТГАСУ	кафедры
(подпись)	_	
СОГЛАСОВАНО:		
Руководитель программы:		
(А.Н. Хуторной)		

А.Н. Хуторной

Перечень вопросов для тестирования

- 1. Виды альтернативных источников энергии.
- 2. Суммарная солнечная радиация.
- 3. Прямая солнечная радиация.
- 4. Рассеянная солнечная радиация.
- 5. От чего зависит интенсивность солнечной радиации.
- 6. Системы солнечного отопления. Виды.
- 7. Пассивные системы солнечного отопления. Принцип действия.
- 8. Активные системы солнечного отопления. Принцип действия.
- 9. Гелиоприемник. Назначение.
- 10. Пассивная система солнечного отопления «Здание-коллектор». Принцип действия.
- 11. Пассивная система солнечного отопления «Стена-коллектор Тромба». Принцип лействия.
- 12. Системы геотермального отопления. Принцип действия.
- 13. Виды геотермальных вод.
- 14. Виды добычи геотермальных вод.
- 15. Системы, использующие теплоту атмосферного воздуха. Принцип действия.
- 16. Назвать компоненты из которых состоит система, использующая теплоту атмосферного воздуха.
- 17. В чем заключается задача расчета систем, использующих теплоту атмосферного воздуха.
- 18. Использование теплоты поверхностных вод. Принцип действия.
- 19. Порядок расчета систем, использующих теплоту поверхностных вод.
- 20. Использование теплоты грунта и грунтовых вод. Принцип действия.
- 21. Преимущества и недостатки систем, использующих теплоту грунта и грунтовых вод.
- 22. Утилизация сбросной теплоты. Принцип действия.
- 23. Назвать источники сбросной теплоты.
- 24. Элементы активной системы солнечного отопления.
- 25. Виды теплоаккумуляторов.
- 26. Типы тепловых насосов.
- 27. Тепловой насос. Определение.
- 28. Тепловой насос. Принцип работы.
- 29. Назвать элементы теплового насоса.
- 30. Компрессор. Принцип работы.
- 31. Конденсатор. Принцип работы.
- 32. Смотровое стекло. Принцип работы.
- 33. Фильтр-осушитель. Принцип работы.
- 34. Капиллярные трубки. Принцип работы.
- 35. Испаритель. Принцип работы.
- 36. Какое давление измеряет манометр.
- 37. Какое давление измеряет мановакуумметр.
- 38. Какое давление измеряет вакуумметр.
- 39. Реле давления. Принцип работы.
- 40. 4 процесса происходящие в цикле теплового насоса.
- 41. Как влияет влага на работу ТН.
- 42. Что такое хладагент?
- 43. Какие вещества можно использовать в качестве хладагента в тепловых насосах?
- 44. Назовите отличия хладагентов от криоагентов?
- 45. От чего зависит выбор типа компрессора?

- 46. Нарисуйте принципиальную схему теплового насоса.
- 47. Опишите физические процессы, происходящие за цикл работы теплового насоса.
- 48. Что происходит при процессе дросселирования?
- 49. Чему соответствует вершина диаграммы.
- 50. Могут ли использоваться для теплоснабжения низко потенциальные источники теплоты напрямую без специальных устройств?
 - 51. Каким образом хладагент поглощает теплоту, а затем отдает ее?
- 52. Могут ли использоваться для теплоснабжения низко потенциальные источники теплоты напрямую без специальных устройств?
- 53. В каком направлении тепловой насос переносит теплоту (от холодного источника к горячему или наоборот)?
 - 54. Что происходит при испарении хладагента?
 - 55. Что происходит при конденсации хладагента?
 - 56. За счет чего происходит повышение температуры хладагента в тепловом насосе?
 - 57. Рекуперативные теплообменники. Принцип работы.
 - 58. Рекуперативные теплообменники. Преимущества и недостатки.
 - 59. Регенеративные теплообменники. Принцип работы.
 - 60. Регенеративные теплообменники. Преимущества и недостатки.

Приложение В

Кадровое обеспечение программы

№ п/п	Наименование дисциплин (модулей), разделов (тем, элементов и т.д.)	Фамилия, имя, отчество, год рождения	Ученая степень, ученое звание	Стаж	Основное место работы, должность	Место работы и должность по совместительству (если есть)
1.	Альтернативная энергетика	Иванова Елена Александровна, 1975	_	20 лет	ТГАСУ,	-
					Ст. преподаватель	